Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Circ Res ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639088

ABSTRACT

BACKGROUND: Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS: To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS: Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS: These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.

2.
Cardiovasc Res ; 119(13): 2312-2328, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37314125

ABSTRACT

AIMS: Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling. METHODS AND RESULTS: Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages. The DOCA-salt model results in differential expression of several known and novel genes in cardiac macrophages, including up-regulation of Trem2, which has been recently implicated in obesity and atherosclerosis. The role of Trem2 in hypertensive heart failure, however, is unknown. We found that mice with genetic deletion of Trem2 exhibit increased cardiac hypertrophy, diastolic dysfunction, renal injury, and decreased cardiac capillary density after DOCA-salt treatment compared to wild-type controls. Moreover, Trem2-deficient macrophages have impaired expression of pro-angiogenic gene programmes and increased expression of pro-inflammatory cytokines. Furthermore, we found that plasma levels of soluble TREM2 are elevated in DOCA-salt treated mice and humans with heart failure. CONCLUSIONS: Together, our data provide an atlas of immunological alterations that can lead to improved diagnostic and therapeutic strategies for HFpEF. We provide our dataset in an easy to explore and freely accessible web application making it a useful resource for the community. Finally, our results suggest a novel cardioprotective role for Trem2 in hypertensive heart failure.


Subject(s)
Cardiomyopathies , Desoxycorticosterone Acetate , Heart Failure , Hypertension , Humans , Mice , Animals , Stroke Volume/physiology , Hypertension/chemically induced , Hypertension/genetics , Hypertension/metabolism , Myeloid Cells/metabolism , Leukocytes/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
3.
Kidney360 ; 4(4): e534-e543, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36951464

ABSTRACT

Hypertension is the leading modifiable risk factor of worldwide morbidity and mortality because of its effects on cardiovascular and renal end-organ damage. Unfortunately, BP control is not sufficient to fully reduce the risks of hypertension, underscoring the need for novel therapies that address end-organ damage in hypertension. Over the past several decades, the link between immune activation and hypertension has been well established, but there are still no therapies for hypertension that specifically target the immune system. In this review, we describe the critical role played by T cells in hypertension and hypertensive end-organ damage and outline potential therapeutic targets to modulate T-cell phenotype and function in hypertension without causing global immunosuppression.


Subject(s)
Cardiovascular System , Hypertension , Humans , T-Lymphocytes , Hypertension/drug therapy , Kidney , Risk Factors
4.
Circ Res ; 131(9): 731-747, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36169218

ABSTRACT

BACKGROUND: SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS: We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS: Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS: Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.


Subject(s)
Hypertension, Renal , Hypertension , Adaptor Proteins, Signal Transducing , Angiotensin II/metabolism , Angiotensin II/toxicity , Animals , Arginine/adverse effects , Arginine/metabolism , CD8-Positive T-Lymphocytes/metabolism , Fibrosis , Genome-Wide Association Study , Humans , Hypertension/metabolism , Hypertension, Renal/metabolism , Interferon-gamma/metabolism , Interleukin-12/adverse effects , Interleukin-12/metabolism , Kidney/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide , Tryptophan
5.
Pregnancy Hypertens ; 24: 126-134, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33971615

ABSTRACT

Preeclampsia (PE) is a disorder of pregnancy, which is categorized by hypertension and proteinuria or signs of end-organ damage. Though PE is the leading cause of maternal and fetal morbidity and mortality, the mechanisms leading to PE remain unclear. The present study examined the contribution of dietary protein source (casein versus wheat gluten) to the risk of developing maternal syndrome utilizing two colonies of Dahl salt-sensitive (SS/JrHsdMcwi) rats. While the only difference between the colonies is the diet, the colonies exhibit profound differences in the pregnancy phenotypes. The SS rats maintained on the wheat gluten (SSWG) chow are protected from developing maternal syndrome; however, approximately half of the SS rats fed a casein-based diet (SSC) exhibit maternal syndrome. Those SSC rats that develop pregnancy-specific increases in blood pressure and proteinuria have no observable differences in renal or placental immune profiles compared to the protected SS rats. A gene profile array of placental tissue revealed a downregulation in Nos3 and Cyp26a1 in the SSC rats that develop maternal syndrome accompanied with increases in uterine artery resistance index suggesting the source of this phenotype could be linked to inadequate remodeling within the placenta. Investigations into the effects of multiple pregnancies on maternal health replicated similar findings. The SSC colony displayed an exacerbation in proteinuria, renal hypertrophy and renal immune cell infiltration associated with an increased mortality rate while the SSWG colony were protected highlighting how dietary protein source could have beneficial effects in PE.


Subject(s)
Dietary Proteins/pharmacology , Kidney Diseases/physiopathology , Kidney/physiopathology , Albuminuria/physiopathology , Animals , Blood Pressure/drug effects , Caseins/pharmacology , Dietary Fats/pharmacology , Dietary Proteins/metabolism , Edible Grain/chemistry , Female , Glutens/pharmacology , Hypertension/physiopathology , Nitric Oxide Synthase Type III , Pre-Eclampsia/physiopathology , Pregnancy , Rats , Rats, Inbred Dahl , Retinoic Acid 4-Hydroxylase
6.
Acta Physiol (Oxf) ; 232(4): e13662, 2021 08.
Article in English | MEDLINE | ID: mdl-33866692

ABSTRACT

AIM: Our previous studies have demonstrated the importance of dietary factors in the determination of hypertension in Dahl salt-sensitive (SS) rats. Since the gut microbiota has been implicated in chronic diseases like hypertension, we hypothesized that dietary alterations shift the microbiota to mediate the development of salt-sensitive hypertension and renal disease. METHODS: This study utilized SS rats from the Medical College of Wisconsin (SS/MCW) maintained on a purified, casein-based diet (0.4% NaCl AIN-76A, Dyets) and from Charles River Laboratories (SS/CRL) fed a whole grain diet (0.75% NaCl 5L79, LabDiet). Faecal 16S rDNA sequencing was used to phenotype the gut microbiota. Directly examining the contribution of the gut microbiota, SS/CRL rats were administered faecal microbiota transfer (FMT) experiments with either SS/MCW stool or vehicle (Vehl) in conjunction with the HS AIN-76A diet. RESULTS: SS/MCW rats exhibit renal damage and inflammation when fed high salt (HS, 4.0% NaCl AIN-76A), which is significantly attenuated in SS/CRL. Gut microbiota phenotyping revealed distinct profiles that correlate with disease severity. SS/MCW FMT worsened the SS/CRL response to HS, evidenced by increased albuminuria (67.4 ± 6.9 vs 113.7 ± 25.0 mg/day, Vehl vs FMT, P = .007), systolic arterial pressure (158.6 ± 5.8 vs 177.8 ± 8.9 mmHg, Vehl vs FMT, P = .09) and renal T-cell infiltration (1.9-fold). Amplicon sequence variant (ASV)-based analysis of faecal 16S rDNA sequencing data revealed taxa that significantly shifted with FMT: Erysipelotrichaceae_2, Parabacteroides gordonii, Streptococcus alactolyticus, Bacteroidales_1, Desulfovibrionaceae_2, Ruminococcus albus. CONCLUSIONS: These data demonstrate that dietary modulation of the gut microbiota directly contributes to the development of Dahl SS hypertension and renal injury.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Animals , Bacteroidetes , Blood Pressure , Diet , Kidney , Rats , Rats, Inbred Dahl , Ruminococcus , Sodium Chloride , Sodium Chloride, Dietary , Streptococcus
7.
Curr Hypertens Rep ; 23(3): 13, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33666761

ABSTRACT

PURPOSE OF REVIEW: To summarize key advances in our understanding of the role of interleukin 17A (IL-17A) in the pathogenesis of hypertension and highlight important areas for future research and clinical translation. RECENT FINDINGS: While T helper 17 (Th17) cells are major producers of IL-17A, there are several additional innate and adaptive immune cell sources including gamma-delta T cells, innate lymphoid cells, and natural killer cells. IL-17A promotes an increase in blood pressure through multiple mechanisms including inhibiting endothelial nitric oxide production, increasing reactive oxygen species formation, promoting vascular fibrosis, and enhancing renal sodium retention and glomerular injury. IL-17A production from Th17 cells is increased by high salt conditions in vitro and in vivo. There is also emerging data linking salt, the gut microbiome, and intestinal T cell IL-17A production. Novel therapeutics targeting IL-17A signaling are approved for the treatment of autoimmune diseases and show promise in both animal models of hypertension and human studies. Hypertensive stimuli enhance IL-17A production. IL-17A is a key mediator of renal and vascular dysfunction in hypertensive mouse models and correlates with hypertension in humans. Large randomized clinical trials are needed to determine whether targeting IL-17A might be an effective adjunct treatment for hypertension and its associated end-organ dysfunction.


Subject(s)
Hypertension , Interleukin-17 , Animals , Blood Pressure , Humans , Hypertension/drug therapy , Immunity, Innate , Lymphocytes
8.
Hypertension ; 77(1): 228-240, 2021 01.
Article in English | MEDLINE | ID: mdl-33249861

ABSTRACT

Genomic sequence and gene expression association studies in animals and humans have identified genes that may be integral in the pathogenesis of various diseases. CD14 (cluster of differentiation 14)-a cell surface protein involved in innate immune system activation-is one such gene associated with cardiovascular and hypertensive disease. We previously showed that this gene is upregulated in renal macrophages of Dahl salt-sensitive animals fed a high-salt diet; here we test the hypothesis that CD14 contributes to the elevated pressure and renal injury observed in salt-sensitive hypertension. Using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), we created a targeted mutation in the CD14 gene on the Dahl SS (SS/JrHSDMcwi) background and validated the absence of CD14 peptides via mass spectrometry. Radiotelemetry was used to monitor blood pressure in wild-type and CD14-/- animals challenged with high salt and identified infiltrating renal immune cells via flow cytometry. Germline knockout of CD14 exacerbated salt-sensitive hypertension and renal injury in female animals but not males. CD14-/- females demonstrated increased infiltrating macrophages but no difference in infiltrating lymphocytes. Transplant of CD14+/+ or CD14-/- bone marrow was used to isolate the effects of CD14 knockout to hematopoietic cells and confirmed that the differential phenotype observed was due to knockout of CD14 in hematopoietic cells. Ovariectomy was used to remove the influence of female sex hormones, which completely abrogated the effect of CD14 knockout. These studies provide a novel treatment target and evidence of a new dichotomy in immune activation between sexes within the context of hypertensive disease where CD14 regulates immune cell activation and renal injury.


Subject(s)
Hypertension/immunology , Kidney/pathology , Lipopolysaccharide Receptors/physiology , Sex Characteristics , Acute Kidney Injury , Animals , Estradiol/physiology , Female , Hypertension/complications , Lipopolysaccharide Receptors/genetics , Male , Rats , Rats, Inbred Dahl
9.
Am J Physiol Renal Physiol ; 318(4): F982-F993, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32150444

ABSTRACT

Studies examining mechanisms of Dahl salt-sensitive (SS) hypertension have implicated the infiltration of leukocytes in the kidneys, which contribute to renal disease and elevated blood pressure. However, the signaling pathways by which leukocytes traffic to the kidneys remain poorly understood. The present study nominated a signaling pathway by analyzing a kidney RNA sequencing data set from SS rats fed either a low-salt (0.4% NaCl) diet or a high-salt (4.0% NaCl) diet. From this analysis, chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-C motif) receptor 2 (CCR2) were nominated as a potential pathway modifying renal leukocyte infiltration and contributing to SS hypertension. The functional role of the CCL2/CCR2 pathway was tested by daily administration of CCR2 antagonist (RS-102895 at 5 mg·kg-1·day-1 in DMSO) or DMSO vehicle for 3 or 21 days by intraperitoneal injections during the high salt challenge. Blood pressure, renal leukocyte infiltration, and renal damage were evaluated. The results demonstrated that RS-102895 treatment ameliorated renal damage (urinary albumin excretion; 43.4 ± 5.1 vs. 114.7 ± 15.2 mg/day in vehicle, P < 0.001) and hypertension (144.3 ± 2.2 vs. 158.9 ± 4.8 mmHg in vehicle, P < 0.001) after 21 days of high-salt diet. It was determined that renal leukocyte infiltration was blunted by day 3 of the high-salt diet (1.4 ± 0.1 vs. 1.9 ± 0.2 in vehicle × 106 CD45+ cells/kidney, P = 0.034). An in vitro chemotaxis assay validated the effect of RS-102895 on leukocyte chemotaxis toward CCL2. The results suggest that increased CCL2 in SS kidneys is important in the early recruitment of leukocytes, and blockade of this recruitment by administering RS-102895 subsequently blunted the renal damage and hypertension.


Subject(s)
Chemokine CCL2/metabolism , Chemotaxis, Leukocyte , Hypertension/metabolism , Kidney/metabolism , Leukocytes/metabolism , Sodium Chloride, Dietary , Animals , Antihypertensive Agents/pharmacology , Arterial Pressure , Benzoxazines/pharmacology , Cells, Cultured , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/genetics , Chemotaxis, Leukocyte/drug effects , Disease Models, Animal , Hypertension/pathology , Hypertension/physiopathology , Hypertension/prevention & control , Kidney/drug effects , Kidney/pathology , Leukocytes/drug effects , Leukocytes/pathology , Male , Piperidines/pharmacology , Rats, Inbred Dahl , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Signal Transduction , Up-Regulation
10.
Curr Hypertens Rep ; 22(2): 13, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32016562

ABSTRACT

PURPOSE OF REVIEW: This review will provide an in-depth coverage of the epidemiological and pre-clinical literature surrounding the role of dietary protein in hypertension, with a special emphasis on the history of our work on the Dahl salt-sensitive rat. RECENT FINDINGS: Our studies have dedicated much effort into understanding the relationship between dietary protein and its effect on the development of salt-sensitive hypertension and renal injury. Our evidence over the last 15 years have demonstrated that both the source and amount of dietary protein can influence the severity of disease, where we have determined mechanisms related to immunity, the maternal environment during pregnancy, and more recently the gut microbiota, which significantly contribute to these diet-induced effects. Deeper understanding of these dietary protein-related mechanisms may provide insight on the plausibility of dietary modifications as future therapeutic avenues for hypertension and renal disease.


Subject(s)
Dietary Proteins , Hypertension , Kidney Diseases , Animals , Blood Pressure , Female , Humans , Kidney , Pregnancy , Rats , Rats, Inbred Dahl , Sodium Chloride, Dietary
11.
Exp Physiol ; 105(5): 864-875, 2020 05.
Article in English | MEDLINE | ID: mdl-32034948

ABSTRACT

NEW FINDINGS: What is the central question of this study? Recruitment of immune cells to the kidney potentiates hypertensive pathology, but more refined methods are needed to assess these cells functionally. Adoptive transfer studies of immune cells have been limited in rat models and especially in the study of salt-sensitive hypertension. We tested the hypothesis that splenocyte transfer into T-cell-deficient rats is sufficient to exacerbate salt-sensitive hypertension. What is the main finding and its importance? We demonstrate that transfer of splenocytes into T-cell-deficient animals exacerbates salt-sensitive hypertension, and an enrichment in the CD4+ compartment specifically induces this phenomenon. ABSTRACT: Increasing evidence of immune system activation during the progression of hypertension and renal injury has led to a need for new methods to study individual cell types. Transfer of immune cells serves as a powerful tool to isolate effects of specific subsets. Transfer studies in Rag1-/- mice have demonstrated an important role of T-cell activation in hypertension, but this approach has yielded limited success in rat models. Using the T-cell-deficient Dahl salt-sensitive (SS) rat, SSCD247-/- , we hypothesized that splenocyte transfer from SS wild-type animals into SSCD247-/- animals would populate the T-cell compartment. The Dahl SS background provides a model for studying salt-sensitive hypertension; therefore, we also tested whether the dietary salt content of the donor would confer differential salt sensitivity in the recipient. To test this, donors were maintained on either a low-salt or a high-salt diet, and at postnatal day 5 the recipients received splenocyte transfer from one of these groups before a high-salt diet challenge. We showed that splenocyte transfer elevated blood pressures while rats were fed low salt and exacerbated the salt-sensitive increase in pressure when they were fed fed high salt. Furthermore, transfer of splenocytes conferred exacerbated renal damage. Lastly, we confirmed the presence of T cells in the circulation and in the spleen, and that infiltration of immune cells, including T cells, macrophages and B cells, into the kidney was elevated in those receiving the transfer. Interestingly, the source of the splenocytes, from donors fed either a low-salt or a high-salt diet, did not significantly affect these salt-sensitive phenotypes.


Subject(s)
Hypertension/pathology , Kidney Diseases/physiopathology , Sodium Chloride, Dietary/adverse effects , Spleen/cytology , Animals , Blood Pressure , Cell Transplantation/adverse effects , Disease Models, Animal , Disease Progression , Male , Rats , Rats, Inbred Dahl , Spleen/transplantation , T-Lymphocytes
12.
Am J Physiol Renal Physiol ; 318(3): F544-F548, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31984790

ABSTRACT

This review will highlight recent studies that have investigated the relationship between Na+, renal macrophage polarization, and renal damage. A hyperosmotic environment drives the macrophage toward a proinflammatory phenotype and away from an anti-inflammatory phenotype. Animal models of salt-sensitive hypertension demonstrate a characteristic infiltration of macrophages into the kidney that is greatly reduced when blood pressure is lowered. Because general immunosuppression or macrophage depletion leads to a host of adverse side effects, more recent studies have modulated the interaction of specific signaling molecules, including NOD-like receptor family pyrin domain-containing 3, chemokine (C-X-C motif) ligand 16, and VEGF, to prevent the end-organ renal damage that accumulates in salt-sensitive disease.


Subject(s)
Hypertension/pathology , Inflammation/metabolism , Kidney Diseases/pathology , Kidney/metabolism , Macrophages/metabolism , Sodium Chloride/adverse effects , Animals , Humans
13.
Hypertension ; 75(2): 372-382, 2020 02.
Article in English | MEDLINE | ID: mdl-31838911

ABSTRACT

The SS (Dahl salt sensitive) rat is an established model of hypertension and renal damage that is accompanied with immune system activation in response to a high-salt diet. Investigations into the effects of sodium-independent and dependent components of the diet were shown to affect the disease phenotype with SS/MCW (JrHsdMcwi) rats maintained on a purified diet (AIN-76A) presenting with a more severe phenotype relative to grain-fed SS/CRL (JrHsdMcwiCrl) rats. Since contributions of the immune system, environment, and diet are documented to alter this phenotype, this present study examined the epigenetic profile of T cells isolated from the periphery and the kidney from these colonies. T cells isolated from kidneys of the 2 colonies revealed that transcriptomic and functional differences may contribute to the susceptibility of hypertension and renal damage. In response to high-salt challenge, the methylome of T cells isolated from the kidney of SS/MCW exhibit a significant increase in differentially methylated regions with a preference for hypermethylation compared with the SS/CRL kidney T cells. Circulating T cells exhibited similar methylation profiles between colonies. Utilizing transcriptomic data from T cells isolated from the same animals upon which the DNA methylation analysis was performed, a predominant negative correlation was observed between gene expression and DNA methylation in all groups. Lastly, inhibition of DNA methyltransferases blunted salt-induced hypertension and renal damage in the SS/MCW rats providing a functional role for methylation. This study demonstrated the influence of epigenetic modifications to immune cell function, highlighting the need for further investigations.


Subject(s)
Blood Pressure/physiology , DNA Methylation/genetics , Epigenesis, Genetic , Hypertension/genetics , Sodium Chloride, Dietary/adverse effects , T-Lymphocytes/metabolism , Animals , Disease Models, Animal , Hypertension/immunology , Hypertension/physiopathology , Male , Phenotype , Rats , Rats, Inbred Dahl , T-Lymphocytes/immunology
14.
Free Radic Biol Med ; 146: 333-339, 2020 01.
Article in English | MEDLINE | ID: mdl-31730933

ABSTRACT

Previous studies utilizing the SSp67phox-/- rat have demonstrated the importance of systemic NADPH oxidase NOX2-derived reactive oxygen species (ROS) production in the pathogenesis of Dahl Salt-Sensitive (SS) hypertension and renal damage. It is established that the immune system contributes to the development of SS hypertension and our laboratory has observed an enrichment of NOX2 subunits in infiltrating T cells. However, the contribution of immune cell-derived ROS in SS hypertension remains unknown. To assess the role of ROS in immune cells, SSp67phox-/- rats underwent total body irradiation and received bone marrow transfer from either SS (+SS) or SSp67phox-/- (+SSp67phox-/-) donor rats. Demonstrated in a respiratory burst assay, response to phorbol 12-myristate 13-acetate stimulus (135 µM) was 10.2-fold greater in peritoneal macrophages isolated from +SS rats compared to nonresponsive + SSp67phox-/- cells, validating that + SS rats were capable of producing NOX2-derived ROS in cells of hematopoietic origin. After 3 weeks of high salt challenge, there was an exacerbated increase in mean arterial pressure in +SS rats compared to + SSp67phox-/- control rats (176.1 ± 4.7 vs 147.9 ± 8.4 mmHg, respectively), which was accompanied by a significant increase in albuminuria (168.3 ± 23.7 vs 107.0 ± 20.4 mg/day) and renal medullary protein cast formation (33.2 ± 4.7 vs 8.1 ± 3.5%). Interestingly, upon analysis of renal immune cells, there was trending increase of CD11b/c + monocytes and macrophages in the kidney of +SS rats (4.7 ± 0.4 vs 3.5 ± 0.5 × 106 cells/kidney, +SS vs + SSp67phox-/-, p = 0.06). These data altogether demonstrate that immune cell production of NOX2-derived ROS is sufficient to exacerbate Dahl SS hypertension, renal damage, and renal inflammation.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Animals , Blood Pressure , Kidney , Rats , Rats, Inbred Dahl , Reactive Oxygen Species , Sodium Chloride, Dietary/adverse effects
15.
Hypertension ; 74(4): 854-863, 2019 10.
Article in English | MEDLINE | ID: mdl-31476910

ABSTRACT

The Dahl salt-sensitive (SS) rat is an established model of SS hypertension and renal damage. In addition to salt, other dietary components were shown to be important determinants of hypertension in SS rats. With previous work eliminating the involvement of genetic differences, grain-fed SS rats from Charles River Laboratories (SS/CRL; 5L2F/5L79) were less susceptible to salt-induced hypertension and renal damage compared with purified diet-fed SS rats bred at the Medical College of Wisconsin (SS/MCW; 0.4% NaCl, AIN-76A). With the known role of immunity in hypertension, the present study characterized the immune cells infiltrating SS/MCW and SS/CRL kidneys via flow cytometry and RNA sequencing in T-cells isolated from the blood and kidneys of rats maintained on their respective parental diet or on 3 weeks of high salt (4.0% NaCl, AIN-76A). SS/CRL rats were protected from salt-induced hypertension (116.5±1.2 versus 141.9±14.4 mm Hg), albuminuria (21.7±3.5 versus 162.9±22.2 mg/d), and renal immune cell infiltration compared with SS/MCW. RNA-seq revealed >50% of all annotated genes in the entire transcriptome to be significantly differentially expressed in T-cells isolated from blood versus kidney, regardless of colony or chow. Pathway analysis of significantly differentially expressed genes between low and high salt conditions demonstrated changes related to inflammation in SS/MCW renal T-cells compared with metabolism-related pathways in SS/CRL renal T-cells. These functional and transcriptomic T-cell differences between SS/MCW and SS/CRL show that dietary components in addition to salt may influence immunity and the infiltration of immune cells into the kidney, ultimately impacting susceptibility to salt-induced hypertension and renal damage.


Subject(s)
Blood Pressure/physiology , Hypertension/pathology , Kidney/pathology , Sodium Chloride, Dietary/pharmacology , T-Lymphocytes/metabolism , Transcriptome , Animals , Blood Pressure/drug effects , Flow Cytometry , Hypertension/metabolism , Kidney/metabolism , Male , Rats , Rats, Inbred Dahl
16.
Am J Physiol Renal Physiol ; 317(2): F361-F374, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31215801

ABSTRACT

Studies of Dahl salt-sensitive (SS) rats have shown that renal CD3+ T cells and ED-1+ macrophages are involved in the development of salt-sensitive hypertension and renal damage. The present study demonstrated that the increase in renal immune cells, which accompanies renal hypertrophy and albuminuria in high-salt diet-fed Dahl SS rats, is absent in Sprague-Dawley and SSBN13 rats that are protected from the SS disease phenotype. Flow cytometric analysis demonstrated that >70% of the immune cells in the SS kidney are M1 macrophages. PCR profiling of renal myeloid cells showed a salt-induced upregulation in 9 of 84 genes related to Toll-like receptor signaling, with notable upregulation of the Toll-like receptor 4/CD14/MD2 complex. Because of the prominent increase in macrophages in the SS kidney, we used liposome-encapsulated clodronate (Clod) to deplete macrophages and assess their contribution to salt-sensitive hypertension and renal damage. Dahl SS animals were administered either Clod-containing liposomes (Clod-Lipo), Clod, or PBS-containing liposomes as a vehicle control. Clod-Lipo treatment depleted circulating and splenic macrophages by ∼50%; however, contrary to our hypothesis, Clod-Lipo-treated animals developed an exacerbated salt-sensitive response with respect to blood pressure and albuminuria, which was accompanied by increased renal T and B cells. Interestingly, those treated with Clod also demonstrated an exacerbated phenotype, but it was less severe than Clod-Lipo-treated animals and independent of changes to the number of renal immune cells. Here, we have shown that renal macrophages in Dahl SS animals sustain a M1 proinflammatory phenotype in response to increased dietary salt and highlighted potential adverse effects of Clod-Lipo macrophage depletion.


Subject(s)
Albuminuria/immunology , Hypertension/immunology , Kidney Diseases/immunology , Kidney/immunology , Macrophages/immunology , Sodium Chloride, Dietary , Albuminuria/etiology , Albuminuria/metabolism , Albuminuria/pathology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Clodronic Acid/toxicity , Disease Models, Animal , Disease Progression , Hypertension/etiology , Hypertension/metabolism , Hypertension/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lipopolysaccharide Receptors/metabolism , Lymphocyte Antigen 96/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Phenotype , Rats, Inbred BN , Rats, Inbred Dahl , Rats, Sprague-Dawley , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Toll-Like Receptor 4/metabolism
17.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R182-R189, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31166692

ABSTRACT

Based on previous studies suggesting a role of renal nerves in renal inflammation, the present studies were performed to test the hypothesis that renal nerves mediate renal damage in Dahl salt-sensitive (SS) hypertension by increasing renal leukocyte infiltration. Experiments were performed in Dahl SS rats with bilateral renal denervation (RDN) and bilateral sham operation (n = 10 or 11 per group) and with unilateral RDN and contralateral sham operation (n = 10). After denervation, rats were switched from a low-salt 0.4% NaCl (LS) diet to a high-salt 4% NaCl (HS) diet and maintained on HS diet for 21 days. Bilateral RDN reduced the magnitude of hypertension assessed by radiotelemetry in Dahl SS rats compared with sham-operated rats (mean arterial pressure 140.9 ±4.8 mmHg and 159.7 ± 3.5 mmHg, respectively) and reduced proteinuria at day 21 of HS diet. However, assessment of renal leukocyte infiltration demonstrated no significant effect of bilateral RDN on the number of infiltrating leukocytes (RDN 3.6 ± 0.5 × 106 vs. sham operated 4.3 ± 0.3 × 106 CD45+ cells) or any of the subsets examined by flow cytometry. The unilateral RDN experiment showed no effect of RDN on the renal infiltration of leukocytes (RDN 6.5 ± 0.9 × 106 vs. sham operated 6.1 ± 1.1 × 106 CD45+ cells/kidney) or renal damage in RDN vs. sham-operated kidney after 21 days of HS diet. This work investigated the relationship between renal nerves and renal inflammation during Dahl SS hypertension. Contrary to our hypothesis, the results of this work suggest that immune cell infiltration in the kidney of Dahl SS rats is not mediated by the renal nerves.


Subject(s)
Hypertension/chemically induced , Kidney/innervation , Kidney/pathology , Leukocytes/physiology , Sodium Chloride, Dietary/toxicity , Animals , Blood Pressure/drug effects , Random Allocation , Rats , Rats, Inbred Dahl
18.
Hypertension ; 73(2): 440-448, 2019 02.
Article in English | MEDLINE | ID: mdl-30595125

ABSTRACT

Studies from our laboratory have revealed an important role for the maternal diet and the dietary protein source in the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats. The current study sought to compare salt-induced hypertension, renal damage, and immune cell infiltration in the offspring of breeders fed either a casein- or gluten-based diet, with the hypothesis that offspring from gluten-fed breeders would fail to develop these SS phenotypes. When fed identical diets post-weaning, the F1 generation gluten offspring demonstrated lower mean arterial pressure (149.1±3.1 versus 162.5±5.8 mm Hg), albuminuria (166.2±34.6 versus 250.9±27.8 mg/day), and outer medullary protein casting (7.4±0.8% versus 13.1±1.3%) in response to high salt compared with the casein offspring (n=9-11). The gluten offspring also had fewer CD45+ leukocytes, CD11b/c+ monocytes/macrophages, CD3+ T cells, and CD45R+ B cells infiltrating the kidney. Analysis of the F2 generation gluten offspring also exhibited lower mean arterial pressure and renal damage compared with rats born from casein breeders (n=7-9), with no difference in renal immune cell infiltration. CMKLR1-receptor for the novel prohypertensive adipokine chemerin-was found via polymerase chain reaction array to be significantly upregulated (2.99-fold) in renal T cells isolated from F2 offspring of casein-fed versus gluten-fed parents. Furthermore, CMKLR1 inhibition via α-NETA (2-[α-naphthoyl] ethyltrimethylammonium iodide) treatment significantly attenuated renal immune cell infiltration, hypertension, and renal damage in SS rats fed high salt. Together, these data demonstrate the influence of the parental diet in determining the salt-induced hypertension, renal damage, and inflammatory phenotype of the offspring.


Subject(s)
Dietary Proteins/administration & dosage , Hypertension/etiology , Maternal Nutritional Physiological Phenomena , Receptors, Chemokine/physiology , Animals , Caseins/administration & dosage , Female , Glutens/administration & dosage , Kidney/immunology , Kidney/pathology , Male , Rats , Rats, Inbred Dahl , Receptors, Chemokine/antagonists & inhibitors , Severity of Illness Index
19.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R28-R35, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29537860

ABSTRACT

The present study, performed in Dahl salt-sensitive (SS) and SS- Rag1-/- rats lacking T and B lymphocytes, tested the hypothesis that immune cells amplify salt-sensitive hypertension and kidney damage in response to a high-protein diet. After being weaned, SS and SS- Rag1-/- rats were placed on an isocaloric, 0.4% NaCl diet containing normal (18%) or high (30%) protein. At 9 wk of age, rats were switched to a 4.0% NaCl diet containing the same amount of dietary protein and maintained on the high-salt diet for 3 wk. After being fed the high-salt diet, SS rats fed high protein had amplified hypertension and albumin excretion (158.7 ± 2.6 mmHg and 140.8 ± 16.0 mg/day, respectively, means ± SE) compared with SS rats fed normal protein (139.4 ± 3.6 mmHg and 69.4 ± 11.3 mg/day). When compared with the SS rats, SS- Rag1-/- rats fed high protein were protected from exacerbated hypertension and albuminuria (142.9 ± 5.8 mmHg and 66.2 ± 10.8 mg/day). After 3 wk of the high-salt diet, there was a corresponding increase in total leukocyte infiltration (CD45+) in the kidneys of both strains fed high-protein diet. The SS- Rag1-/- rats fed high-protein diet had 74-86% fewer CD3+ T lymphocytes and CD45R+ B lymphocytes infiltrating the kidney versus SS rats, but there was no difference in the infiltration of CD11b/c+ monocytes and macrophages, suggesting that the protective effects observed in the SS- Rag1-/- rats are specific to the reduction of lymphocytes. With the SS- Rag1-/- rats utilized as a novel tool to explore the effects of lymphocyte deficiency, these results provide evidence that adaptive immune mechanisms contribute to the exacerbation of salt-induced hypertension and renal injury mediated by increased dietary protein intake.


Subject(s)
Adaptive Immunity , B-Lymphocytes/immunology , Blood Pressure , Diet, High-Protein/adverse effects , Genes, RAG-1 , Hypertension/immunology , Kidney Diseases/immunology , Kidney/immunology , Sodium Chloride, Dietary , T-Lymphocytes/immunology , Albuminuria/genetics , Albuminuria/immunology , Albuminuria/physiopathology , Animals , B-Lymphocytes/metabolism , CD3 Complex/deficiency , CD3 Complex/genetics , Disease Models, Animal , Hypertension/blood , Hypertension/genetics , Hypertension/physiopathology , Kidney/metabolism , Kidney/physiopathology , Kidney Diseases/blood , Kidney Diseases/genetics , Kidney Diseases/physiopathology , Male , Rats, Inbred Dahl , Rats, Transgenic , Risk Factors , T-Lymphocytes/metabolism
20.
Pharmacol Res ; 120: 109-115, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28336371

ABSTRACT

Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy.


Subject(s)
Adaptive Immunity , Hypertension/immunology , Immunity, Innate , Adaptive Immunity/drug effects , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/pathology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cytokines/immunology , Humans , Hypertension/drug therapy , Hypertension/pathology , Immunity, Innate/drug effects , Molecular Targeted Therapy/methods , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...